2002 AMC 10A Problems/Problem 16

Revision as of 18:18, 17 September 2014 by Shreyaskb (talk | contribs) (See Also)

Problem

Let $a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5$. What is $a + b + c + d$?

$\text{(A)}\ -5 \qquad \text{(B)}\ -10/3 \qquad \text{(C)}\ -7/3 \qquad \text{(D)}\ 5/3 \qquad \text{(E)}\ 5$

Solution

Let $x=a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5$. Since one of the sums involves a, b, c, and d, it makes sense to consider 4x. We have $4x=(a+1)+(b+2)+(c+3)+(d+4)=a+b+c+d+10=4(a+b+c+d)+20$. Rearranging, we have $3(a+b+c+d)=-10$, so $a+b+c+d=\frac{-10}{3}$. Thus, our answer is $\boxed{\text{(B)}\ -10/3}$.

See Also

2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Say that $a + 1 = a + b + c + d + 5$

With substitution we get

$-4 = b + c + d$

Following this pattern with $b + 2$, $c + 3$, and $d + 4$ we can get: $-4 = b + c + d$ $-3 = a + c + d$ $-2 = a + b + d$ $-1 = a + b + c$ Adding, we can get $-10 = 3a + 3b + 3c + 3d$, therefore $a +b + c + d$ = $-10/3$