Euler line
In any triangle , the Euler line is a line which passes through the orthocenter , centroid , circumcenter , nine-point center and De Longchamps point . It is named after Leonhard Euler. Its existence is a non-trivial fact of Euclidean geometry. Certain fixed orders and distance ratios hold among these points. In particular, and
Given the orthic triangle of , the Euler lines of ,, and concur at , the nine-point center of .
Proof of Existence
This proof utilizes the concept of spiral similarity, which in this case is a rotation followed homothety. Consider the medial triangle . It is similar to . Specifically, a rotation of about the midpoint of followed by a homothety with scale factor centered at brings . Let us examine what else this transformation, which we denote as , will do.
It turns out is the orthocenter, and is the centroid of . Thus, . As a homothety preserves angles, it follows that . Finally, as it follows that Thus, are collinear, and .
~always_correct
This article is a stub. Help us out by expanding it.