2018 AMC 8 Problems/Problem 21
Problem 21
How many positive three-digit integers have a remainder of 2 when divided by 6, a remainder of 5 when divided by 9, and a remainder of 7 when divided by 11?
Solution
Looking at the values, we notice that , and . This means we are looking for a value that is four less than a mulitple of 11, 9 and 6. The least common multiple of these number is , so the numbers that fulfill this can be written as , where k is a positive integer. This value is only a three digit integer when is or , which output and respectively. Thus we have 5 values, so our answer is
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.