2020 AMC 12A Problems/Problem 12

Revision as of 14:13, 2 February 2020 by Constance-variance (talk | contribs) (Square)

Problem

Line $l$ in the coordinate plane has equation $3x-5y+40=0$. This line is rotated $45^{\circ}$ counterclockwise about the point $(20,20)$ to obtain line $k$. What is the $x$-coordinate of the $x$-intercept of line $k?$

$\textbf{(A) } 10 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 20 \qquad \textbf{(D) } 25 \qquad \textbf{(E) } 30$

Solution

The slope of the line is $\frac{3}{5}$. We must transform it by $45^{\circ}$.

$45^{\circ}$ creates an isosceles right triangle since the sum of the angles of the triangle must be $180^{\circ}$ and one angle is $90^{\circ}$ which means the last leg angle must also be $45^{\circ}$.

In the isosceles right triangle, the two legs are congruent. We can, therefore, construct an isosceles right triangle with a line of $\frac{3}{5}$ slope on graph paper. That line with $\frac{3}{5}$ slope starts at $(0,0)$ and will go to $(5,3)$, the vector $<5,3>$.

Construct another line from $(0,0)$ to $(3,-5)$, the vector $<3,-5>$. This is $\perp$ and equal to the original line segment. The difference between the two vectors is $<2,8>$, which is the slope $4$, and that is the slope of line $k$.

Furthermore, the equation $3x-5y+40=0$ passes straight through $(20,20)$ since $3(20)-5(20)+40=60-100+40=0$, which means that any rotations about $(20,20)$ would contain $(20,20)$. We can create a line of slope $4$ through $(20,20)$. The $x$-intercept is therefore $20-\frac{20}{4} = \boxed{\textbf{(B) } 15.}$~lopkiloinm

Solution 2

Since the slope of the line is $\frac{3}{5}$, and the angle we are rotating around is x, then $\tan x = \frac{3}{5}$ $\tan(x+45^{\circ}) = \frac{\tan x + \tan(45^{\circ})}{1-\tan x*\tan(45^{\circ})} = \frac{0.6+1}{1-0.6} = \frac{1.6}{0.4} = 4$

Hence, the slope of the rotated line is $4$. Since we know the line intersects the point $(20,20)$, then we know the line is $y=4x-60$. Set $y=0$ to find the x-intercept, and so $x=\boxed{15}$

~Solution by IronicNinja

Solution 3

[asy] draw((0,0)--(20, 0)--(20, 20)--(0, 20)--cycle); draw((20, 20)--(0, 8)); draw((15, 0)--(20, 20));  dot("$P$", (20, 20)); dot("$A$", (0, 8), dir(75)); dot("$B$", (15, 0), dir(45)); dot("$X$", (20, 0)); dot("$Y$", (0, 20), dir(50)); [/asy]

Let $P$ be $(20, 20)$ and $X, Y$ be $(20, 0)$ and $(0, 20)$ respectively. Since the slope of the line is $3/5$ we know that $\tan{\angle{YPA}} = 3/5.$ Segments $\overline{PA}$ and $\overline{PB}$ represent the before and after of rotating $l$ by 45 counterclockwise. Thus, $\angle{XPB} = 45 - \angle{YPA}$ and \[BX = 20 \tan{\angle{XPB}} = 20 \cdot \frac{1 - 3/5}{1 + 3/5} = 5\] by tangent addition formula. Since $BX$ is 5 and the sidelength of the square is 20 the answer is $20 - 5 \implies \boxed{\textbf{B}}.$

Solution 4 (Cheap)

Using the protractor you brought, carefully graph the equation and rotate the given line $45^{\circ}$ counter-clockwise about the point $(20,20)$. Scaling everything down by a factor of 5 makes this process easier.

It should then become fairly obvious that the x intercept is $x=\boxed{15}$ (only use this as a last resort).

~Silverdragon

See Also

2020 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png