2020 AMC 12A Problems/Problem 22

Revision as of 16:51, 1 February 2020 by Vedadehhc (talk | contribs) (Created page with "== Problem == Let <math>(a_n)</math> and <math>(b_n)</math> be the sequences of real numbers such that <cmath>\[ (2 + i)^n = a_n + b_ni \]</cmath>for all integers <math>n\geq...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $(a_n)$ and $(b_n)$ be the sequences of real numbers such that \[ (2 + i)^n = a_n + b_ni \]for all integers $n\geq 0$, where $i = \sqrt{-1}$. What is\[\sum_{n=0}^\infty\frac{a_nb_n}{7^n}\,?\] $\textbf{(A) }\frac 38\qquad\textbf{(B) }\frac7{16}\qquad\textbf{(C) }\frac12\qquad\textbf{(D) }\frac9{16}\qquad\textbf{(E) }\frac47$

Solution

Square the given equality to yield \[(3 + 4i)^n = (a_n + b_ni)^2 = (a_n^2 - b_n^2) + 2a_nb_ni,\] so $a_nb_n = \tfrac12\operatorname{Im}((3+4i)^n)$ and \[\sum_{n\geq 0}\frac{a_nb_n}{7^n} = \frac12\operatorname{Im}\left(\sum_{n\geq 0}\frac{(3+4i)^n}{7^n}\right) = \frac12\operatorname{Im}\left(\frac{1}{1 - \frac{3 + 4i}7}\right) = \boxed{\frac 7{16}}.\]

See Also

2020 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png