1980 AHSME Problems/Problem 18

Revision as of 00:20, 3 October 2014 by Timneh (talk | contribs) (Created page with "== Problem == If <math>b>1</math>, <math>\sin x>0</math>, <math>\cos x>0</math>, and <math>\log_b \sin x = a</math>, then <math>\log_b \cos x</math> equals <math>\text{(A)} \ 2...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If $b>1$, $\sin x>0$, $\cos x>0$, and $\log_b \sin x = a$, then $\log_b \cos x$ equals

$\text{(A)} \ 2\log_b(1-b^{a/2}) ~~\text{(B)} \ \sqrt{1-a^2} ~~\text{(C)} \ b^{a^2} ~~\text{(D)} \ \frac 12 \log_b(1-b^{2a}) ~~\text{(E)} \ \text{none of these}$

Solution

$\fbox{}$

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png