2006 AIME I Problems/Problem 6

Revision as of 13:10, 25 September 2007 by 1=2 (talk | contribs) (Problem)

Problem

Square $ABCD$ has sides of length 1. Points $E$ and $F$ are on $\overline{BC}$ and $\overline{CD},$ respectively, so that $\triangle AEF$ is equilateral. A square with vertex $B$ has sides that are parallel to those of $ABCD$ and a vertex on $\overline{AE}.$ The length of a side of this smaller square is $\frac{a-\sqrt{b}}{c},$ where $a, b,$ and $c$ are positive integers and $b$ is not divisible by the square of any prime. Find $a+b+c.$

Solution

Numbers of the form $0.\overline{abc}$ can be written as $\frac{abc}{999}$. There are $10\times9\times8=720$ such numbers. Each digit will appear in each place value $\frac{720}{10}=72$ times, and the sum of the digits, 0 through 9, is 45. So the sum of all the numbers is $\frac{45\times72\times111}{999}=360$.


Alternatively, for every number, $0.\overline{abc}$, there will be exactly one other number, such that when they are added together, the sum is $0.\overline{999}$, or, more precisely, 1. As an example, $.\overline{123}+.\overline{876}=.\overline{999} \Longrightarrow 1$.

Thus, the solution can be determined by dividing the total number of permutations by 2. The answer is $\frac{10 \cdot 9 \cdot 8}{2} = \frac{720}{2}= 360$.

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions