AM-GM Inequality
In algebra, the AM-GM Inequality, also known formally as the Inequality of Arithmetic and Geometric Means or informally as AM-GM, is an inequality that states that any list of nonnegative reals' arithmetic mean is greater than or equal to its geometric mean. Furthermore, the two means are equal if and only if every number in the list is the same.
In symbols, the inequality states that for any real numbers , with equality if and only if .
The AM-GM Inequality is among the most famous inequalities in algebra and has cemented itself as ubiquitous across almost all competitions. Applications exist at introductory, intermediate, and olympiad level problems, with AM-GM being particularly crucial in proof-based contests.
Contents
Proofs
- Main article: Proofs of AM-GM
All known proofs of AM-GM use either induction or other, more advanced inequalities. Its proof is far more complicated than its usage in introductory competitions; consequentially, learning it is not recommended to students new to proofs. The most elementary proof of AM-GM utilizes Cauchy Induction, a variant of induction that involves proving a result for two, then using induction to prove it for all powers of two, and then a backward step where implies .
Generalizations
The AM-GM Inequality has been generalized into several other inequalities. In addition to those listed, the Minkowski Inequality and Muirhead's Inequality are also generalizations of AM-GM.
Weighted AM-GM Inequality
The Weighted AM-GM Inequality relates the weighted arithmetic and geometric means. It states that for any list of weights such that , with equality if and only if . When , the weighted form is reduced to the AM-GM Inequality. Several proofs of the Weighted AM-GM Inequality can be found in the proofs of AM-GM article.
Mean Inequality Chain
- Main article: Mean Inequality Chain
The Mean Inequality Chain, also called the RMS-AM-GM-HM Inequality, relates the root mean square, arithmetic mean, geometric mean, and harmonic mean of a list of nonnegative reals. In particular, it states that with equality if and only if . As with AM-GM, there also exists a weighted version of the Mean Inequality Chain.
Power Mean Inequality
- Main article: Power Mean Inequality
The Power Mean Inequality relates all the different power means of a list of nonnegative reals. The power mean is defined as follows: The Power Mean inequality then states that if , then , with equality holding if and only if Plugging into this inequality reduces it to AM-GM, and gives the Mean Inequality Chain. As with AM-GM, there also exists a weighted version of the Power Mean Inequality.
Problems
Introductory
- For nonnegative real numbers , demonstrate that if then . (Solution)
- Find the maximum of for all positive . (Solution)
Intermediate
- Find the minimum value of for .
(Source)
Olympiad
- Let , , and be positive real numbers. Prove that
(Source)