2022 AIME I Problems/Problem 1

Revision as of 15:36, 17 February 2022 by MRENTHUSIASM (talk | contribs)

Problem 1

Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$

Solution

Let \begin{align*} P(x) &= 2x^2 + ax + b, \\ Q(x) &= -2x^2 + cx + d, \end{align*} for some constants $a,b,c$ and $d.$

We are given that \begin{alignat*}{8} P(16) &= 512 + 16a + b &&= 54, \hspace{20mm}&&(1) \\ Q(16) &= -512 + 16c + d &&= 54, \hspace{20mm}&&(2) \\ P(20) &= 800 + 20a + b &&= 53,  \hspace{20mm}&&(3) \\ Q(20) &= -800 + 20c + d &&= 53, \hspace{20mm}&&(4) \end{alignat*} and we wish to find $P(0)+Q(0)=b+d.$

Subtracting $4\cdot[(3)+(4)]$ from $5\cdot[(1)+(2)],$ we have \[b+d=5\cdot(54+54)-4\cdot(53+53)=\boxed{116}.\]

~MRENTHUSIASM

See Also

2022 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png