2022 AIME I Problems/Problem 1

Revision as of 16:16, 24 March 2022 by Aditya404 (talk | contribs)

Problem

Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$

Video Solution

https://youtu.be/MJ_M-xvwHLk?t=7 ~ ThePuzzlr

Solution 1 (Linear Polynomials)

Let $R(x)=P(x)+Q(x).$ Since the $x^2$-terms of $P(x)$ and $Q(x)$ cancel, we conclude that $R(x)$ is a linear polynomial.

Note that \begin{alignat*}{8} R(16) &= P(16)+Q(16) &&= 54+54 &&= 108, \\ R(20) &= P(20)+Q(20) &&= 53+53 &&= 106, \end{alignat*} so the slope of $R(x)$ is $\frac{106-108}{20-16}=-\frac12.$

It follows that the equation of $R(x)$ is \[R(x)=-\frac12x+c\] for some constant $c,$ and we wish to find $R(0)=c.$

We substitute $x=20$ into this equation to get $106=-\frac12\cdot20+c,$ from which $c=\boxed{116}.$

~MRENTHUSIASM

Solution 2 (Quadratic Polynomials)

Let \begin{align*} P(x) &= 2x^2 + ax + b, \\ Q(x) &= -2x^2 + cx + d, \end{align*} for some constants $a,b,c$ and $d.$

We are given that \begin{alignat*}{8} P(16) &= &512 + 16a + b &= 54, \hspace{20mm}&&(1) \\ Q(16) &= &\hspace{1mm}-512 + 16c + d &= 54, &&(2) \\ P(20) &= &800 + 20a + b &= 53,  &&(3) \\ Q(20) &= &\hspace{1mm}-800 + 20c + d &= 53, &&(4) \end{alignat*} and we wish to find \[P(0)+Q(0)=b+d.\] We need to cancel $a$ and $c.$ Since $\operatorname{lcm}(16,20)=80,$ we subtract $4\cdot[(3)+(4)]$ from $5\cdot[(1)+(2)]$ to get \[b+d=5\cdot(54+54)-4\cdot(53+53)=\boxed{116}.\] ~MRENTHUSIASM

Video Solution (Mathematical Dexterity)

https://www.youtube.com/watch?v=sUfbEBCQ6RY

Video Solution by MRENTHUSIASM (English & Chinese)

https://www.youtube.com/watch?v=XcS5qcqsRyw&ab_channel=MRENTHUSIASM

~MRENTHUSIASM

See Also

2022 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png