2016 AMC 10B Problems/Problem 12

Revision as of 20:18, 18 June 2022 by Erics son07 (talk | contribs) (Solution 1)

Problem

Two different numbers are selected at random from $\{1, 2, 3, 4, 5\}$ and multiplied together. What is the probability that the product is even?

$\textbf{(A)}\ 0.2\qquad\textbf{(B)}\ 0.4\qquad\textbf{(C)}\ 0.5\qquad\textbf{(D)}\ 0.7\qquad\textbf{(E)}\ 0.8$

Solution 1

The product will be even if at least one selected number is even, and odd if none are. Using complementary counting, the chance that both numbers are odd is $\frac{\tbinom32}{\tbinom52}=\frac3{10}$, so the answer is $1-0.3$ which is $\boxed{\textbf{(D) }0.7}$.

An alternate way to finish: Since it is odd if none are even, the probability is $1-(\frac{3}{5} \cdot \frac{2}{4})=1-\frac{3}{10}=0.7 \Longrightarrow \boxed{\textbf{(D) }0.7}$. ~Alternate solve by JH. L

Solution 2

There are $2$ cases to get an even number. Case 1: $\text{Even} \times \text{Even}$ and Case 2: $\text{Odd} \times \text{Even}$. Thus, to get an $\text{Even} \times \text{Even}$, you get $\frac {\binom {2}{2}}{\binom {5}{2}}= \frac {1}{10}$. And to get $\text{Odd} \times \text{Even}$, you get $\frac {\binom {3}{1}}{\binom {5}{2}}= \frac {6}{10}$. $\frac {1}{10}+\frac {6}{10}=\frac {7}{10}$ which is $0.7$ and the answer is $\boxed{\textbf{(D) }0.7}$.

Video Solution

https://youtu.be/tUpKpGmOwDQ - savannahsolver

https://youtu.be/IRyWOZQMTV8?t=933 - pi_is_3.14

See Also

2016 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png