2022 AMC 8 Problems/Problem 23

Revision as of 11:09, 15 January 2023 by Dream9 (talk | contribs) (Solution 1 (Casework))

Problem

A $\triangle$ or $\bigcirc$ is placed in each of the nine squares in a $3$-by-$3$ grid. Shown below is a sample configuration with three $\triangle$s in a line. [asy] //diagram by kante314 size(3.3cm); defaultpen(linewidth(1)); real r = 0.37; path equi = r * dir(-30) -- (r+0.03) * dir(90) -- r * dir(210) -- cycle; draw((0,0)--(0,3)--(3,3)--(3,0)--cycle); draw((0,1)--(3,1)--(3,2)--(0,2)--cycle); draw((1,0)--(1,3)--(2,3)--(2,0)--cycle); draw(circle((3/2,5/2),1/3)); draw(circle((5/2,1/2),1/3)); draw(circle((3/2,3/2),1/3)); draw(shift(0.5,0.38) * equi); draw(shift(1.5,0.38) * equi); draw(shift(0.5,1.38) * equi); draw(shift(2.5,1.38) * equi); draw(shift(0.5,2.38) * equi); draw(shift(2.5,2.38) * equi); [/asy] How many configurations will have three $\triangle$s in a line and three $\bigcirc$s in a line?

$\textbf{(A) } 39 \qquad \textbf{(B) } 42 \qquad \textbf{(C) } 78 \qquad \textbf{(D) } 84 \qquad \textbf{(E) } 96$

Solution 1 (Casework)

s, one line of circles, and the last one can be anything that includes both shapes. There are $3! = 6$ ways to arrange the lines and $2^3-2 = 6$ ways to choose the last lineththtrtrh

. In total, this is $6\cdot 6 = 36.$

Finally, we add and multiply: $2(36+6)=2(42)=\boxed{\textbf{(D) }84}$.

~wamofan

Solution 2

We will only consider columns, but at the end our answer should be multiplied by $2$. There are $3$ ways to choose a column for $\bigcirc$ and $2$ ways to choose a column for $\triangle$. The third column can be filled in $2^3=8$ ways. Therefore, we have $3\cdot2\cdot8=48$ ways. However, we overcounted the cases with $2$ complete columns of with one symbol and $1$ complete column with another symbol. This happens in $2\cdot3=6$ ways. $48-6=42$. However, we have to remember to double our answer giving us $\boxed{\textbf{(D) }84}$.

~MathFun1000

Video Solution

https://www.youtube.com/watch?v=or4pKVzQ3gI

~Mathematical Dexterity

Video Solution

https://youtu.be/Ij9pAy6tQSg?t=2250

~Interstigation

Video Solution

https://www.youtube.com/watch?v=KYglbGTvfsY

Video Solution

https://youtu.be/0orAAUaLIO0?t=257

~STEMbreezy

Video Solution

https://youtu.be/YYvbTopjB1E

~savannahsolver

See Also

2022 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png