2019 AIME I Problems/Problem 8
Contents
[hide]Problem
Let be a real number such that
. Then
where
and
are relatively prime positive integers. Find
.
Solution 1
We can substitute . Since we know that
, we can do some simplification.
This yields . From this, we can substitute again to get some cancellation through binomials. If we let
, we can simplify the equation to
. After using binomial theorem, this simplifies to
. If we use the quadratic formula, we obtain the that
, so
. By plugging z into
(which is equal to
), we can either use binomial theorem or sum of cubes to simplify, and we end up with
. Therefore, the answer is
.
-eric2020, inspired by Tommy2002
Solution 2
First, for simplicity, let and
. Note that
. We then bash the rest of the problem out. Take the tenth power of this expression and get
. Note that we also have
. So, it suffices to compute
. Let
. We have from cubing
that
or
. Next, using
, we get
or
. Solving gives
or
. Clearly
is extraneous, so
. Now note that
, and
. Thus we finally get
, giving
.
- Emathmaster
Solution 3 (Newton Sums)
Newton sums is basically constructing the powers of the roots of the polynomials instead of deconstructing them which was done in Solution . Let
and
be the roots of some polynomial
. Then, by Vieta,
for some
.
Let . We want to find
. Clearly
and
. Newton sums tells us that
where
for our polynomial
.
Bashing, we have
Thus
. Clearly,
so
.
Note . Solving for
, we get
. Finally,
.
Solution 4
Factor the first equation.
First of all,
because
We group the first, third, and fifth term and second and fourth term. The first group:
The second group:
Add the two together to make
Because this equals
, we have
Let
so we get
Solving the quadratic gives us
Because
, we finally get
.
Now from the second equation,
Plug in
to get
which yields the answer
~ZericHang
Solution 5
Define the recursion
We know that the characteristic equation of
must have 2 roots, so we can recursively define
as
.
is simply the sum of the roots of the characteristic equation, which is
.
is the product of the roots, which is
. This value is not trivial and we have to solve for it.
We know that
,
,
.
Solving the rest of the recursion gives
Solving for in the expression for
gives us
, so
. Since
, we know that the minimum value it can attain is
by AM-GM, so
cannot be
.
Plugging in the value of
into the expression for
, we get
. Our final answer is then
-Natmath
Solution 6
Let and
, then
and
Now factoring as solution 4 yields
.
Since ,
.
Notice that can be rewritten as
. Thus,
and
. As in solution 4, we get
and
Substitute and
, then
, and the desired answer is
Solution 7 (Official MAA)
Let and let
Then for
Because
and
it follows that
and
Hence
or
and because
the only possible value of
is
Therefore
The requested sum is
Video Solution By North America Math Contest Go Go Go
https://www.youtube.com/watch?v=a3Ps425bYUM
~ Please sub.!
Video Solution By The Power Of Logic
~ Hayabusa1
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.