2002 AIME I Problems/Problem 14

Revision as of 14:15, 25 November 2007 by Minsoens (talk | contribs)

Problem

A set $\mathcal{S}$ of distinct positive integers has the following property: for every integer $x$ in $\mathcal{S},$ the arithmetic mean of the set of values obtained by deleting $x$ from $\mathcal{S}$ is an integer. Given that 1 belongs to $\mathcal{S}$ and that 2002 is the largest element of $\mathcal{S},$ what is the greatet number of elements that $\mathcal{S}$ can have?

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2002 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions