1998 AHSME Problems/Problem 8

Revision as of 14:54, 11 August 2008 by Azjps (talk | contribs) (solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A square with sides of length $1$ is divided into two congruent trapezoids and a pentagon, which have equal areas, by joining the center of the square with points on three of the sides, as shown. Find $x$, the length of the longer parallel side of each trapezoid.

[asy] pointpen = black; pathpen = black; D(unitsquare); D((0,0)); D((1,0)); D((1,1)); D((0,1)); D(D((.5,.5))--D((1,.5))); D(D((.17,1))--(.5,.5)--D((.17,0))); MP("x",(.58,1),N); [/asy]

$\mathrm{(A) \ } \frac 35 \qquad \mathrm{(B) \ } \frac 23 \qquad \mathrm{(C) \ } \frac 34 \qquad \mathrm{(D) \ } \frac 56 \qquad \mathrm{(E) \ } \frac  78$

Solution

[asy] pointpen = black; pathpen = black; D(unitsquare); D((0,0)); D((1,0)); D((1,1)); D((0,1)); D(D((.5,.5))--D((1,.5))); D(D((.17,1))--(.5,.5)--D((.5,1)));D(D((1-.17,1))--(.5,.5)--D((.17,0))); D((.17,1)--(.17,0));D((1-.17,1)--(1-.17,.5));D((0,.5)--(.5,.5)); MP("x",(.58,1),N); MP("I",(.17/2,.25),(0,0));MP("I",(.17/2,.75),(0,0));MP("I",(1-.17/2,.75),(0,0));MP("II",(.5-.17,.4),(0,0));MP("II",(.5-.17,.6),(0,0));MP("II",(.5-.17,.9),(0,0));MP("II",(.5+.17,.9),(0,0));MP("II",(.5+.17,.6),(0,0)); [/asy]

Then $2[I]+2[II] = [I]+3[II] \Longrightarrow [I]=[II]$. Let the shorter side of $I$ be $m$ and the base of $II$ be $n$ such that $m+2n = x$; then $[I]=[II]$ implies that $2m=n$, and since $2m + 2n = 1$ it follows that $m = \frac 16$ and $x = \frac 56 \Longrightarrow \mathbf{(D)}$.

See also

1998 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions