2002 AMC 12B Problems/Problem 19

Revision as of 18:44, 15 January 2008 by Azjps (talk | contribs) (sol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If $a,b,$ and $c$ are positive real numbers such that $a(b+c) = 152, b(c+a) = 162,$ and $c(a+b) = 170$, then $abc$ is

$\mathrm{(A)}\ 672 \qquad\mathrm{(B)}\ 688 \qquad\mathrm{(C)}\ 704 \qquad\mathrm{(D)}\ 720 \qquad\mathrm{(E)}\ 750$

Solution

Adding up the three equations gives $2(ab + bc + ca) = 152 + 162 + 170 = 484 \Longrightarrow ab + bc + ca = 242$. Subtracting each of the above equations from this yields, respectively, $bc = 90, ca = 80, ab = 72$. Taking their product, $ab \cdot bc \cdot ca = a^2b^2c^2 = 90 \cdot 80 \cdot 72 = 720^2 \Longrightarrow abc = \boxed{720} \Rightarrow \mathrm{(D)}$.

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions