2014 AMC 10B Problems/Problem 15

Revision as of 17:02, 20 February 2014 by TheCrafter (talk | contribs) (Added problem [credits to AlcumusGuy])

Problem

In rectangle $ABCD$, $DC = 2CB$ and points $E$ and $F$ lie on $\overline{AB}$ so that $\overline{ED}$ and $\overline{FD}$ trisect $\angle ADC$ as shown. What is the ratio of the area of $\triangle DEF$ to the area of rectangle $ABCD$?

[asy] draw((0, 0)--(0, 1)--(2, 1)--(2, 0)--cycle); draw((0, 0)--(sqrt(3)/3, 1)); draw((0, 0)--(sqrt(3), 1)); label("A", (0, 1), N); label("B", (2, 1), N); label("C", (2, 0), S); label("D", (0, 0), S); label("E", (sqrt(3)/3, 1), N); label("F", (sqrt(3), 1), N); [/asy]

$\textbf{(A)}\ \ \frac{\sqrt{3}}{6}\qquad\textbf{(B)}\ \frac{\sqrt{6}}{8}\qquad\textbf{(C)}\ \frac{3\sqrt{3}}{16}\qquad\textbf{(D)}}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{\sqrt{2}}{4}$ (Error compiling LaTeX. Unknown error_msg)

Solution

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png