2016 AMC 12B Problems/Problem 17

Revision as of 11:12, 21 February 2016 by Mathmaster2012 (talk | contribs) (Created page with "==Problem== In <math>\triangle ABC</math> shown in the figure, <math>AB=7</math>, <math>BC=8</math>, <math>CA=9</math>, and <math>\overline{AH}</math> is an altitude. Points ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

In $\triangle ABC$ shown in the figure, $AB=7$, $BC=8$, $CA=9$, and $\overline{AH}$ is an altitude. Points $D$ and $E$ lie on sides $\overline{AC}$ and $\overline{AB}$, respectively, so that $\overline{BD}$ and $\overline{CE}$ are angle bisectors, intersecting $\overline{AH}$ at $Q$ and $P$, respectively. What is $PQ$?

[asy] import graph; size(9cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.381056062031275, xmax = 15.020004395092375, ymin = -4.051697595316909, ymax = 10.663513514111651; /* image dimensions */


draw((0.,0.)--(4.714285714285714,7.666518779999279)--(7.,0.)--cycle);

/* draw figures */

draw((0.,0.)--(4.714285714285714,7.666518779999279)); draw((4.714285714285714,7.666518779999279)--(7.,0.)); draw((7.,0.)--(0.,0.)); label("7",(3.2916797119724284,-0.07831656949355523),SE*labelscalefactor); label("9",(2.0037562070503783,4.196493361737088),SE*labelscalefactor); label("8",(6.114150371695219,3.785453945272603),SE*labelscalefactor); draw((0.,0.)--(6.428571428571427,1.9166296949998194)); draw((7.,0.)--(2.2,3.5777087639996634)); draw((4.714285714285714,7.666518779999279)--(3.7058823529411766,0.));

/* dots and labels */

dot((0.,0.),dotstyle); label("$A$", (-0.2432592696221352,-0.5715638692509372), NE * labelscalefactor); dot((7.,0.),dotstyle); label("$B$", (7.0458397156813835,-0.48935598595804014), NE * labelscalefactor); dot((3.7058823529411766,0.),dotstyle); label("$E$", (3.8123296394941084,0.16830708038513573), NE * labelscalefactor); dot((4.714285714285714,7.666518779999279),dotstyle); label("$C$", (4.579603216894479,7.895848109917452), NE * labelscalefactor); dot((2.2,3.5777087639996634),linewidth(3.pt) + dotstyle); label("$D$", (2.1407693458718726,3.127790878929427), NE * labelscalefactor); dot((6.428571428571427,1.9166296949998194),linewidth(3.pt) + dotstyle); label("$H$", (6.004539860638023,1.9494778850645704), NE * labelscalefactor); dot((5.,1.49071198499986),linewidth(3.pt) + dotstyle); label("$Q$", (4.935837377830365,1.7302568629501784), NE * labelscalefactor); dot((3.857142857142857,1.1499778169998918),linewidth(3.pt) + dotstyle); label("$P$", (3.538303361851119,1.2370095631927964), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);

/* end of picture */

[/asy]

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ \frac{5}{8}\sqrt{3} \qquad \textbf{(C)}\ \frac{4}{5}\sqrt{2} \qquad \textbf{(D)}\ \frac{8}{15}\sqrt{5} \qquad \textbf{(E)}\ \frac{6}{5}$

Solution

See Also

2016 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png