2016 AMC 12B Problems/Problem 16

Revision as of 11:10, 21 February 2016 by Mathmaster2012 (talk | contribs) (Created page with "==Problem== In how many ways can <math>345</math> be written as the sum of an increasing sequence of two or more consecutive positive integers? <math>\textbf{(A)}\ 1\qquad\t...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

In how many ways can $345$ be written as the sum of an increasing sequence of two or more consecutive positive integers?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 7$

Solution

See Also

2016 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png