2013 AIME I Problems/Problem 12
Problem 12
Let be a triangle with
and
. A regular hexagon
with side length 1 is drawn inside
so that side
lies on
, side
lies on
, and one of the remaining vertices lies on
. There are positive integers
and
such that the area of
can be expressed in the form
, where
and
are relatively prime, and c is not divisible by the square of any prime. Find
.
Solution
First, find that .
Draw
. Now draw
around
such that
is adjacent to
and
. The height of
is
, so the length of base
is
. Let the equation of
be
. Then, the equation of
is
. Solving the two equations gives
. The area of
is
.
Cartesian Variation Solution
Also use a coordinate system, but upon drawing the diagram call the origin and
be on the x-axis. Obviously
is the vertex on
. After labeling coordinates (noting additionally that
is an equilateral triangle), we see that the area is
times
times the ordinate of
. Draw a perpendicular of
, call it
, and note that
after using the trig functions for
degrees.
Now, get the lines for and
:
and
, whereupon we get the ordinate of
to be
, and the area is
, so our answer is
.
See also
2013 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.