1970 AHSME Problems/Problem 23

Revision as of 05:42, 15 July 2019 by Talkinaway (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The number $10!$ ($10$ is written in base $10$), when written in the base $12$ system, ends with exactly $k$ zeros. The value of $k$ is

$\text{(A) } 1\quad \text{(B) } 2\quad \text{(C) } 3\quad \text{(D) } 4\quad \text{(E) } 5$

Solution

A number in base $b$ that ends in exactly $k$ zeros will be divisible by $b^k$, but not by $b^{k+1}$. Thus, we want to find the highest $k$ for which $12^k | 10!$.

There are $4$ factors of $3$: $3, 6, 9$, and an extra factor from $9$.

There are $8$ factors of $2$: $2, 4, 6, 8, 10$, an extra factor from $4, 8$, and a third extra factor from $8$.

So, $2^8 \cdot 3^4 = 4^4 \cdot 3^4 = 12^4$ will divide $10!$. Thus, the answer is $\fbox{D}$.

See also

1970 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png