2014 AMC 10B Problems/Problem 5

Revision as of 18:47, 27 December 2019 by Masterwinston (talk | contribs) (Solution: LaTeXed numbers)

Problem

Doug constructs a square window using $8$ equal-size panes of glass, as shown. The ratio of the height to width for each pane is $5 : 2$, and the borders around and between the panes are $2$ inches wide. In inches, what is the side length of the square window? [asy] fill((0,0)--(2,0)--(2,26)--(0,26)--cycle,gray); fill((6,0)--(8,0)--(8,26)--(6,26)--cycle,gray); fill((12,0)--(14,0)--(14,26)--(12,26)--cycle,gray); fill((18,0)--(20,0)--(20,26)--(18,26)--cycle,gray); fill((24,0)--(26,0)--(26,26)--(24,26)--cycle,gray); fill((0,0)--(26,0)--(26,2)--(0,2)--cycle,gray); fill((0,12)--(26,12)--(26,14)--(0,14)--cycle,gray); fill((0,24)--(26,24)--(26,26)--(0,26)--cycle,gray); [/asy] $\textbf{(A)}\ 26\qquad\textbf{(B)}\ 28\qquad\textbf{(C)}\ 30\qquad\textbf{(D)}\ 32\qquad\textbf{(E)}\ 34$

Solution

We note that the total length must be the same as the total height because the window is a square. Calling the width of each small rectangle $2x$, and the height $5x$, we can see that the length is composed of $4$ widths and $5$ bars of length $2$. This is equal to two heights of the small rectangles as well as $3$ bars of $2$. Thus, $4(2x) + 5(2) = 2(5x) + 3(2)$. We quickly find that $x = 2$. The total side length is $4(4) + 5(2) = 2(10) + 3(2) = 26$, or $\boxed{\textbf{(A)}}$.

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png