2020 AIME I Problems/Problem 14
Problem
Let be a quadratic polynomial with complex coefficients whose
coefficient is
Suppose the equation
has four distinct solutions,
Find the sum of all possible values of
Solution 1
Either or not. We first see that if
it's easy to obtain by Vieta's that
. Now, take
and WLOG
. Now, consider the parabola formed by the graph of
. It has vertex
. Now, say that
. We note
. Now, we note
by plugging in again. Now, it's easy to find that
, yielding a value of
. Finally, we add
. ~awang11, charmander3333
Solution 2
Let the roots of be
and
, then we can write
. The fact that
has solutions
implies that some combination of
of these are the solution to
, and the other
are the solution to
. It's fairly easy to see there are only
possible such groupings:
and
, or
and
(Note that
are interchangeable, and so are
and
). We now to casework:
If
, then
so this gives
.
Next, if
, then
Subtracting the first part of the first equation from the first part of the second equation gives
Hence,
, and so
.
Therefore, the solution is
~ktong
Solution 3
Write . Split the problem into two cases:
and
.
Case 1: We have . We must have
Rearrange and divide through by
to obtain
Now, note that
Now, rearrange to get
and thus
Substituting this into our equation for
yields
. Then, it is clear that
does not have a double root at
, so we must have
and
or vice versa. This gives
and
or vice versa, implying that
and
.
Case 2: We have . Then, we must have
. It is clear that
(we would otherwise get
implying
or vice versa), so
and
.
Thus, our final answer is $49+36=\fbox{085)$ (Error compiling LaTeX. Unknown error_msg). ~GeronimoStilton
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.