1988 AHSME Problems/Problem 19

Problem

Simplify

$\frac{bx(a^2x^2 + 2a^2y^2 + b^2y^2) + ay(a^2x^2 + 2b^2x^2 + b^2y^2)}{bx + ay}$

$\textbf{(A)}\ a^2x^2 + b^2y^2\qquad \textbf{(B)}\ (ax + by)^2\qquad \textbf{(C)}\ (ax + by)(bx + ay)\qquad\\ \textbf{(D)}\ 2(a^2x^2+b^2y^2)\qquad \textbf{(E)}\ (bx+ay)^2$


Solution

The fastest way is to multiply each answer choice by $bx + ay$ and then compare to the numerator. This gives $\boxed{\text{B}}$.

Solution 2

Expanding everything in the brackets, we get $\frac{ba^2x^3 + 2ba^2xy^2 + b^3xy^2 + a^3x^2y + 2ab^2x^2y + ab^2y^3}{bx + ay}$. We can then group numbers up in pairs so they equal $n(bx + ay)$:

$= \frac{ba^2x^3 + a^3x^2y + 2ab^2x^2y + 2ba^2xy^2 + b^3xy^2 + ab^2y^3}{bx+ay}$

$= \frac{bx + ay(a^2x^2) + bx + ay(2baxy) + bx + ay(b^2y^2)}{bx+ay}$

$= a^2x^2 + 2baxy + b^2y^2$

$= (ax + by)^2$

We get $\boxed{\text{B}}$.

See also

1988 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png