2021 AMC 10B Problems/Problem 11

Revision as of 23:34, 11 February 2021 by Olivera (talk | contribs)

Problem

Grandma has just finished baking a large rectangular pan of brownies. She is planning to make rectangular pieces of equal size and shape, with straight cuts parallel to the sides of the pan. Each cut must be made entirely across the pan. Grandma wants to make the same number of interior pieces as pieces along the perimeter of the pan. What is the greatest possible number of brownies she can produce?

$\textbf{(A)} ~24 \qquad\textbf{(B)} ~30 \qquad\textbf{(C)} ~48 \qquad\textbf{(D)} ~60 \qquad\textbf{(E)} ~64$

Solution 1:

Let the side lengths of this rectangular pan be $m$ and $n$; it follows that $(m-2)(n-2) = \frac{mn}{2}$. This gives $(m-4)(n-4) = 8$ after some manipulation, so $(m, n) = (5, 12), (6, 8)$. By inspection, $5 \cdot 12 = \boxed{\textbf{(D) }60}$ maximizes the number of brownies ~ ike.chen

Solution 2:

Let the dimensions of the rectangular pan be $x$ and $y$. The number of interior pieces is $(x-2)(y-2)$ because you cannot include the border, and the number of pieces along the perimeter is $\frac{xy}{2}$ (THIS PART IS FLAWED ~ anonymous user).

Setting these two expressions equal, we have $\frac{xy}{2}=(x-2)(y-2) \Rightarrow xy=2(xy-2y-2x+4) \Rightarrow xy-4x-4y+8=0$

Applying SFFT (Simon's Favorite Factoring Trick), we get $(x-4)(y-4)=8$. Doing a bit of trial-and-error, we see that $xy$ is maximum when $x=5$ and $y=12$, which gives us a maximum of $60$ brownies. $\Rightarrow \boxed{\textbf{(D) }60}$.

~Bryguy

2021 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
2021 AMC 10A
Followed by
2022 AMC 10A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions