2021 AMC 10B Problems/Problem 1

Revision as of 23:56, 11 February 2021 by Olivera (talk | contribs)

Problem

How many integer values of $x$ satisfy $|x|<3\pi$?

$\textbf{(A)} ~9 \qquad\textbf{(B)} ~10 \qquad\textbf{(C)} ~18 \qquad\textbf{(D)} ~19 \qquad\textbf{(E)} ~20$

Solution

Since $3\pi$ is about $9.42$, we multiply 9 by 2 and add 1 to get $\boxed{\textbf{(D)}\ ~19}$~smarty101

Solution 2

$3\pi \approx 9.4.$ There are two cases here.

When $x>0, |x|>0,$ and $x = |x|.$ So then $x<9.4$

When $x<0, |x|>0,$ and $x = -|x|.$ So then $-x<9.4$. Dividing by $-1$ and flipping the sign, we get $x>-9.4.$

From case 1 and 2, we need $-9.4 < x < 9.4$. Since $x$ is an integer, we must have $x$ between $-9$ and $9$. There are a total of \[9-(-9) + 1 = \boxed{\textbf{(D)}\ ~19} \text{ integers}.\]

-PureSwag

Solution 3

$|x|<3\pi$ $\iff$ $-3\pi<x<3\pi$. Since $\pi$ is approximately $3.14$, $3\pi$ is approximately $9.42$. We are trying to solve for $-9.42<x<9.42$, where $x\in\mathbb{Z}$. Hence, $-9.42<x<9.42$ $\implies$ $-9\leq x\leq9$, for $x\in\mathbb{Z}$. The number of integer values of $x$ is $9-(-9)+1=19$. Therefore, the answer is $\boxed{\textbf{(D)}19}$.

~ {TSun} ~

2021 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions