1955 AHSME Problems/Problem 27

Revision as of 09:47, 15 February 2021 by Coolmath34 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 27

If $r$ and $s$ are the roots of $x^2-px+q=0$, then $r^2+s^2$ equals:

$\textbf{(A)}\ p^2+2q\qquad\textbf{(B)}\ p^2-2q\qquad\textbf{(C)}\ p^2+q^2\qquad\textbf{(D)}\ p^2-q^2\qquad\textbf{(E)}\ p^2$


Solution

We can write $r^2+s^2$ in terms of the sum of the roots $(r+s)$ and the products of the roots $(rs):$ \[r^2 + s^2 = (r+s)^2 - 2rs = p^2 - 2q\] The answer is $\boxed{\textbf{(B)}}.$

See Also

1955 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png