2021 AMC 10B Problems/Problem 17

Revision as of 15:18, 6 November 2021 by MRENTHUSIASM (talk | contribs) (Undo revision 164714 by Puffer13 (talk) We wrote this solution COLLECTIVELY. So, credits should be given to all contributors.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Ravon, Oscar, Aditi, Tyrone, and Kim play a card game. Each person is given $2$ cards out of a set of $10$ cards numbered $1,2,3, \dots,10.$ The score of a player is the sum of the numbers of their cards. The scores of the players are as follows: Ravon--$11,$ Oscar--$4,$ Aditi--$7,$ Tyrone--$16,$ Kim--$17.$ Which of the following statements is true?

$\textbf{(A) }\text{Ravon was given card 3.}$

$\textbf{(B) }\text{Aditi was given card 3.}$

$\textbf{(C) }\text{Ravon was given card 4.}$

$\textbf{(D) }\text{Aditi was given card 4.}$

$\textbf{(E) }\text{Tyrone was given card 7.}$

Solution

By logical deduction, we consider the scores from lowest to highest: \begin{align*} \text{Oscar's score is 4.} &\implies \text{Oscar is given cards 1 and 3.} \\ &\implies \text{Aditi is given cards 2 and 5.} \\ &\implies \text{Ravon is given cards 4 and 7.} && (\bigstar) \\ &\implies \text{Tyrone is given cards 6 and 10.} \\ &\implies \text{Kim is given cards 8 and 9.} \end{align*} Therefore, the answer is $\boxed{\textbf{(C) }\text{Ravon was given card 4.}}$

Certainly, if we read the answer choices sooner, then we can stop at $(\bigstar)$ and pick $\textbf{(C)}.$

~smarty101 ~smartypantsno_3 ~SmileKat32 ~MRENTHUSIASM

Video Solution by OmegaLearn (Using Logical Deduction)

https://youtu.be/zO0EuKPXuT0

~ pi_is_3.14

Video Solution by TheBeautyofMath

https://youtu.be/FV9AnyERgJQ?t=284

~IceMatrix

Video Solution by Interstigation

https://youtu.be/8BPKs24eyes

~Interstigation

See Also

2021 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png