1996 AIME Problems/Problem 15

Revision as of 15:24, 24 September 2007 by 1=2 (talk | contribs) (Problem)

Problem

In parallelogram $ABCD$, let $O$ be the intersection of diagonals $\overline{AC}$ and $\overline{BD}$. Angles $CAB$ and $DBC$ are each twice as large as angle $DBA$, and angle $ACB$ is $r$ times as large as angle $AOB$. Find the greatest integer that does not exceed $1000r$.

Solution

See also

1996 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Final Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions