ONLINE AMC 8 PREP WITH AOPS
Top scorers around the country use AoPS. Join training courses for beginners and advanced students.
VIEW CATALOG

2022 AMC 8 Problems

Revision as of 11:07, 28 January 2022 by Pog (talk | contribs) (Problem 11)

IMPORTANT: When copied a problem, replace the X's for answer choices.

Problem 1

The Math Team designed a logo shaped like a multiplication symbol, shown below on a grid of 1-inch squares. What is the area of the logo in square inches?

usepackage("mathptmx");
defaultpen(linewidth(0.5));
size(5cm);
defaultpen(fontsize(14pt));
label("$\textbf{Math}$", (2.1,3.7)--(3.9,3.7));
label("$\textbf{Team}$", (2.1,3)--(3.9,3));
filldraw((1,2)--(2,1)--(3,2)--(4,1)--(5,2)--(4,3)--(5,4)--(4,5)--(3,4)--(2,5)--(1,4)--(2,3)--(1,2)--cycle, mediumgray*0.5 + lightgray*0.5);

draw((0,0)--(6,0), gray);
draw((0,1)--(6,1), gray);
draw((0,2)--(6,2), gray);
draw((0,3)--(6,3), gray);
draw((0,4)--(6,4), gray);
draw((0,5)--(6,5), gray);
draw((0,6)--(6,6), gray);

draw((0,0)--(0,6), gray);
draw((1,0)--(1,6), gray);
draw((2,0)--(2,6), gray);
draw((3,0)--(3,6), gray);
draw((4,0)--(4,6), gray);
draw((5,0)--(5,6), gray);
draw((6,0)--(6,6), gray);
 (Error making remote request. Unexpected URL sent back)

$\textbf{(A) } 10 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15$

Solution

Problem 2

Consider these two operations: \begin{align*} a \, \blacklozenge \, b &= a^2 - b^2\\ a \, \bigstar \, b &= (a - b)^2 \end{align*} What is the value of $(5 \, \blacklozenge \, 3) \, \bigstar \, 6?$

$\textbf{(A) } {-}20 \qquad \textbf{(B) } 4 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 100 \qquad \textbf{(E) } 220$

Solution

Problem 3

When three positive integers $a$, $b$, and $c$ are multiplied together, their product is $100$. Suppose $a < b < c$. In how many ways can the numbers be chosen?

$\textbf{(A) } 0 \qquad \textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) } 4$

Solution

Problem 4

The letter M in the figure below is first reflected over the line $q$ and then reflected over the line $p$. What is the resulting image?

[asy] // pog diagram usepackage("newtxtext"); size(3cm); draw((-1,0)--(1,0)); draw((0,-1)--(0,1)); label("$\textbf{\textsf{M}}$",(0.25,0.6)); draw((-0.8,-0.8)--(0.8,0.8),linewidth(1.1)); label("$p$", (-1,0),NE); label("$q$", (-0.75,-0.75), N*1.5); [/asy]

[asy] // pog diagram usepackage("newtxtext"); size(12.5cm); draw((-1,0)--(1,0)); draw((0,-1)--(0,1)); label(rotate(90)*"$\textbf{\textsf{M}}$",(0.6,-0.25)); draw((-0.8,-0.8)--(0.8,0.8),linewidth(1.1));  label("$\textbf{(A)}$",(-1,1),W); draw((2,0)--(4,0)); draw((3,-1)--(3,1)); label(rotate(270)*"$\textbf{\textsf{M}}$",(2.8,0.7)); draw((2.2,-0.8)--(3.8,0.8),linewidth(1.1));  label("$\textbf{(B)}$",(2,1),W); draw((5,0)--(7,0)); draw((6,-1)--(6,1)); label(rotate(90)*"$\textbf{\textsf{M}}$",(5.4,0.2)); draw((5.2,-0.8)--(6.8,0.8),linewidth(1.1));  label("$\textbf{(C)}$",(5,1),W); draw((-1,-2.5)--(1,-2.5)); draw((0,-3.5)--(0,-1.5)); label(rotate(180)*"$\textbf{\textsf{M}}$",(-0.25,-3.1)); draw((-0.8,-3.3)--(0.8,-1.7),linewidth(1.1));  label("$\textbf{(D)}$",(-1,-1.5),W); draw((2,-2.5)--(4,-2.5)); draw((3,-3.5)--(3,-1.5)); label(rotate(270)*"$\textbf{\textsf{M}}$",(3.6,-2.75)); draw((2.2,-3.3)--(3.8,-1.7),linewidth(1.1));  label("$\textbf{(E)}$",(2,-1.5),W); [/asy]

Solution

Problem 5

Anna and Bella are celebrating their birthdays together. Five years ago, when Bella turned $6$ years old, she received a newborn kitten as a birthday present. Today the sum of the ages of the two children and the kitten is $30$ years. How many years older than Bella is Anna?

$\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 3 \qquad \textbf{(D) } 4 \qquad \textbf{(E) } ~5$

Solution

Problem 6

Three positive integers are equally spaced on a number line. The middle number is $15,$ and the largest number is $4$ times the smallest number. What is the smallest of these three numbers?

$\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8$

Solution

Problem 7

When the World Wide Web first became popular in the $1990$s, download speeds reached a maximum of about $56$ kilobits per second. Approximately how many minutes would the download of a $4.2$-megabyte song have taken at that speed? (Note that there are $8000$ kilobits in a megabyte.)

$\textbf{(A) } 0.6 \qquad \textbf{(B) } 10 \qquad \textbf{(C) } 1800 \qquad \textbf{(D) } 7200 \qquad \textbf{(E) } 36000$

Solution

Problem 8

What is the value of \[\frac{1}{3}\cdot\frac{2}{4}\cdot\frac{3}{5}\cdots\frac{18}{20}\cdot\frac{19}{21}\cdot\frac{20}{22}?\]

$\textbf{(A) } \frac{1}{462} \qquad \textbf{(B) } \frac{1}{231} \qquad \textbf{(C) } \frac{1}{132} \qquad \textbf{(D) } \frac{2}{213} \qquad \textbf{(E) } \frac{1}{22}$

Solution

Problem 9

A cup of boiling water ($212^{\circ}\text{F}$) is placed to cool in a room whose temperature remains constant at $68^{\circ}\text{F}$. Suppose the difference between the water temperature and the room temperature is halved every $5$ minutes. What is the water temperature, in degrees Fahrenheit, after $15$ minutes?

$\textbf{(A)} ~77\qquad\textbf{(B)} ~86\qquad\textbf{(C)} ~92\qquad\textbf{(D)} ~98\qquad\textbf{(E)} ~104$

Solution

Problem 10

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 11

Henry the donkey has a very long piece of pasta. He takes a number of bites of pasta, each time eating $3$ inches of pasta from the middle of one piece. In the end, he has $10$ pieces of pasta whose total length is $17$ inches. How long, in inches, was the piece of pasta he started with?

$\textbf{(A)} ~34\qquad\textbf{(B)} ~38\qquad\textbf{(C)} ~41\qquad\textbf{(D)} ~44\qquad\textbf{(E)} ~47$

Solution

Problem 12

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 13

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 14

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 15

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 16

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 17

If $n$ is an even positive integer, the double factorial notation $n!!$ represents the product of all the even integers from $2$ to $n$. For example, $8!! = 2 \cdot 4 \cdot 6 \cdot 8$. What is the units digit of the following sum? \[2!! + 4!! + 6!! + \cdots + 2018!! + 2020!! + 2022!!\]

$\textbf{(A)} ~0\qquad\textbf{(B)} ~2\qquad\textbf{(C)} ~4\qquad\textbf{(D)} ~6\qquad\textbf{(E)} ~8$

Solution

Problem 18

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 19

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 20

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 21

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 22

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 23

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 24

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution

Problem 25

$\textbf{(A) } X \qquad \textbf{(B) } X \qquad \textbf{(C) } X \qquad \textbf{(D) } X \qquad \textbf{(E) } X$

Solution