2022 AMC 8 Problems/Problem 24

Revision as of 16:12, 7 June 2022 by Lvluo (talk | contribs) (Remark)

Problem

The figure below shows a polygon $ABCDEFGH$, consisting of rectangles and right triangles. When cut out and folded on the dotted lines, the polygon forms a triangular prism. Suppose that $AH = EF = 8$ and $GH = 14$. What is the volume of the prism?

[asy] usepackage("mathptmx"); size(275); defaultpen(linewidth(0.8)); real r = 2, s = 2.5, theta = 14; pair G = (0,0), F = (r,0), C = (r,s), B = (0,s), M = (C+F)/2, I = M + s/2 * dir(-theta); pair N = (B+G)/2, J = N + s/2 * dir(180+theta); pair E = F + r * dir(- 45 - theta/2), D = I+E-F; pair H = J + r * dir(135 + theta/2), A = B+H-J; draw(A--B--C--I--D--E--F--G--J--H--cycle^^rightanglemark(F,I,C)^^rightanglemark(G,J,B)); draw(J--B--G^^C--F--I,linetype ("4 4")); dot("$A$",A,N); dot("$B$",B,1.2*N); dot("$C$",C,N); dot("$D$",D,dir(0)); dot("$E$",E,S); dot("$F$",F,1.5*dir(-100)); dot("$G$",G,S); dot("$H$",H,W); dot("$I$",I,NE); dot("$J$",J,1.5*S); [/asy]

$\textbf{(A)} ~112\qquad\textbf{(B)} ~128\qquad\textbf{(C)} ~192\qquad\textbf{(D)} ~240\qquad\textbf{(E)} ~288$

Solution

While imagining the folding, $\overline{AB}$ goes on $\overline{BC},$ $\overline{AH}$ goes on $\overline{CI},$ and $\overline{EF}$ goes on $\overline{FG}.$ So, $\overline{BJ}=\overline{CI}=8$ and $\overline{FG}=\overline{BC}=8.$ Also, $\overline{HJ}$ becomes an edge parallel to $\overline{FG},$ so that means $\overline{HJ}=8.$

Since $\overline{GH}=14,$ then $\overline{JG}=14-8=6.$ So, the area of $\triangle BJG$ is $\frac{8\cdot6}{2}=24.$ If we let $\triangle BJG$ be the base, then the height is $\overline{FG}=8.$ So, the volume is $24\cdot8=\boxed{\textbf{(C) }192}.$

Solution by aops-g5-gethsemanea2

Solution 2

After folding polygon $ABCDEFGH$ on the dotted lines, we obtain the following triangular prism: [asy] /* Made by MRENTHUSIASM -._-.(edited by Lvluo) :D .-_.-*/ usepackage("mathptmx"); size(200); defaultpen(linewidth(0.8)); import graph3; import solids;  currentprojection=orthographic((0.3,-0.3,0.3)); triple J, G, B, A, H, F; J = (0,0,0); G = (6,0,0); B = (0,8,0); A = (0,8,8); H = (0,0,8); F = (6,0,8); draw(surface(B--J--G--cycle),yellow); draw(surface(H--A--F--cycle),yellow); draw(B--J,dashed); draw(G--J--H--A--B^^A--F--H^^F--G^^B--G); draw((0.5,0,0)--(0.5,0.5,0)--(0,0.5,0)^^(0.5,0,8)--(0.5,0.5,8)--(0,0.5,8)); dot("$A=C$",A,1.5*E); dot("$B$",B,1.5*E); dot("$D=J$",J,1.5*W); dot("$F$",F,1.5*E); dot("$H=I$",H,1.5*W); dot("$E=G$",G,1.5*E); label("$8$",midpoint(A--H),1.5*NW,red); label("$6$",midpoint(H--F),1.5*S,red); label("$8$",midpoint(H--J),1.5*W,red); [/asy]

Then the volume of this triangular prism is $8 \times \frac {6 \times 8}{2} = \boxed{\textbf{(C) }192}$.

/* (edited by Lvluo .-_.-  :) */

~MRENTHUSIASM

Video Solution

https://www.youtube.com/watch?v=2uoBPp4Kxck

~Mathematical Dexterity

Video Solution

https://youtu.be/Ij9pAy6tQSg?t=2432

~Interstigation

See Also

2022 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png