1986 AIME Problems/Problem 10
Problem
In a parlor game, the magician asks one of the participants to think of a three digit number where , , and represent digits in base in the order indicated. The magician then asks this person to form the numbers , , , , and , to add these five numbers, and to reveal their sum, . If told the value of , the magician can identify the original number, . Play the role of the magician and determine if .
Solution
Solution 1
Let be the number . Observe that so
This reduces to one of . But also so . Of the four options, only satisfies this inequality.
Solution 2
As in Solution 1, , and so as above we get . We can also take this equation modulo ; note that , so
Therefore is mod and mod . There is a shared factor in in both, but the Chinese Remainder Theorem still tells us the value of mod , namely mod . We see that there are no other 3-digit integers that are mod , so .
Solution 3
Let then Since , we get the inequality Checking each of the multiples of from to by subtracting from each , we quickly find
~ Nafer
Solution 4
The sum of the five numbers is We can see that mod and mod so we need to make sure that mod by some testing. So we let
Then, we know that so only lie in the interval
When we test , impossible
When we test
When we test , well, it's impossible
The answer is then
~bluesoul
See also
1986 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.