2021 Fall AMC 12A Problems/Problem 7

Revision as of 04:07, 13 August 2022 by MRENTHUSIASM (talk | contribs) (As I found out what t and s are, I just want to make the solution more concise by not substituting at the very end. It should be clear to readers already.)
The following problem is from both the 2021 Fall AMC 10A #10 and 2021 Fall AMC 12A #7, so both problems redirect to this page.

Problem

A school has $100$ students and $5$ teachers. In the first period, each student is taking one class, and each teacher is teaching one class. The enrollments in the classes are $50, 20, 20, 5,$ and $5$. Let $t$ be the average value obtained if a teacher is picked at random and the number of students in their class is noted. Let $s$ be the average value obtained if a student was picked at random and the number of students in their class, including the student, is noted. What is $t-s$?

$\textbf{(A)}\ {-}18.5  \qquad\textbf{(B)}\ {-}13.5 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 13.5 \qquad\textbf{(E)}\ 18.5$

Solution

The formula for expected values is \[\text{Expected Value}=\sum(\text{Outcome}\cdot\text{Probability}).\] We have \begin{align*} t &= 50\cdot\frac15 + 20\cdot\frac15 + 20\cdot\frac15 + 5\cdot\frac15 + 5\cdot\frac15 \\ &= (50+20+20+5+5)\cdot\frac15 \\ &= 100\cdot\frac15 \\ &= 20, \\ s &= 50\cdot\frac{50}{100} + 20\cdot\frac{20}{100} + 20\cdot\frac{20}{100} + 5\cdot\frac{5}{100} + 5\cdot\frac{5}{100} \\ &= 25 + 4 + 4 + 0.25 + 0.25 \\ &= 33.5. \end{align*} Therefore, the answer is $t-s=\boxed{\textbf{(B)}\ {-}13.5}.$

~MRENTHUSIASM

Video Solution by TheBeautyofMath

for AMC 10: https://youtu.be/ycRZHCOKTVk?t=789

for AMC 12: https://youtu.be/wlDlByKI7A8?t=157

~IceMatrix

Video Solution by WhyMath

https://youtu.be/f7vhOCnvl0k ~savannahsolver

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png