1996 AIME Problems/Problem 11

Revision as of 19:00, 27 November 2007 by Azjps (talk | contribs) (this cannot be right .... *double checks* *triple checks* ... the answer is never 0 ...)

Problem

Let $\mathrm {P}$ be the product of the roots of $z^6+z^4+z^3+z^2+1=0$ that have an imaginary part, and suppose that $\mathrm {P}=r(\cos{\theta^{\circ}}+i\sin{\theta^{\circ}})$, where $0<r$ and $0\leq \theta <360$. Find $\theta$.

Solution

Solution 1

\begin{eqnarray*} 0 &=& z^6 - z + z^4 + z^3 + z^2 + z + 1 = z(z^5 - 1) + \frac{z^5-1}{z-1}\\ 0 &=& \frac{(z^5 - 1)(z(z-1)+1)}{z-1}\\ 0 &=& \frac{(z^2-z+1)(z^5-1)}{z-1} \end{eqnarray*}

Thus $z^5 = 1, z \neq 1 \Longrightarrow z = \mathrm{cis} \frac{360 k}{5}, k = 1, 2, \ldots 4$, or $z^2 - z + 1 = 0 \Longrightarrow z = \frac{1 \pm \sqrt{-3}}{2} = \mathrm{cis} 60, 300$. Therefore all of the roots are complex, and the answer is $\boxed{0}$.

Solution 2

See also

1996 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions