2023 AMC 12B Problems/Problem 11

Revision as of 19:38, 15 November 2023 by Eevee9406 (talk | contribs) (insert question)

Problem

What is the maximum area of an isosceles trapezoid that has legs of length $1$ and one base twice as long as the other?

$\textbf{(A) }\frac 54 \qquad \textbf{(B) } \frac 87 \qquad \textbf{(C)} \frac{5\sqrt2}4 \qquad \textbf{(D) } \frac 32  \qquad \textbf{(E) } \frac{3\sqrt3}4$

Solution

Denote by $x$ the length of the shorter base. Thus, the height of the trapezoid is \begin{align*} \sqrt{1^2 - \left( \frac{x}{2} \right)^2} . \end{align*}

Thus, the area of the trapezoid is \begin{align*} \frac{1}{2} \left( x + 2 x \right) \sqrt{1^2 - \left( \frac{x}{2} \right)^2}  & = \frac{3}{4} \sqrt{x^2 \left( 4 - x^2 \right)} \\ & \leq \frac{3}{4} \frac{x^2 + \left( 4 - x^2 \right)}{2} \\ & = \boxed{\textbf{(D) } \frac{3}{2}} , \end{align*}

where the inequality follows from the AM-GM inequality and it is binding if and only if $x^2 = 4 - x^2$.

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See Also

2023 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png