1965 AHSME Problems/Problem 6

Revision as of 08:55, 18 July 2024 by Thepowerful456 (talk | contribs) (see also box)

Problem 6

If $10^{\log_{10}9} = 8x + 5$ then $x$ equals:

$\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ \frac {1}{2} \qquad  \textbf{(C) }\ \frac {5}{8} \qquad  \textbf{(D) }\ \frac{9}{8}\qquad \textbf{(E) }\ \frac{2\log_{10}3-5}{8}$

Solution

Notice that $10^{\log_{10} 9} = 9$. Therefore, the condition we are looking for is $9=8x+5$, or $x=\frac{1}{2}$. $\text{So the answer is }  \boxed{\textbf{(B)}}$

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions