1965 AHSME Problems/Problem 18

Revision as of 15:57, 18 July 2024 by Thepowerful456 (talk | contribs) (maa notice)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

If $1 - y$ is used as an approximation to the value of $\frac {1}{1 + y}, |y| < 1$, the ratio of the error made to the correct value is:

$\textbf{(A)}\ y \qquad  \textbf{(B) }\ y^2 \qquad  \textbf{(C) }\ \frac {1}{1 + y} \qquad  \textbf{(D) }\ \frac{y}{1+y}\qquad \textbf{(E) }\ \frac{y^2}{1+y}\qquad$

Solution

The error made in this approximation is $\frac{1}{1+y}-(1-y)$, and the correct value is $\frac{1}{1+y}$. Taking the ratio of these two values, we have: 11+y(1y)11+y=[11+y(1y)][1+y][11+y][1+y]=1(1y2)1=y2

Thus, our answer is $\boxed{\textbf{(B) }y^2}$

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png