1965 AHSME Problems/Problem 24

Revision as of 18:25, 18 July 2024 by Thepowerful456 (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Given the sequence $10^{\frac {1}{11}},10^{\frac {2}{11}},10^{\frac {3}{11}},\ldots,10^{\frac {n}{11}}$, the smallest value of n such that the product of the first $n$ members of this sequence exceeds $100000$ is:

$\textbf{(A)}\ 7 \qquad  \textbf{(B) }\ 8 \qquad  \textbf{(C) }\ 9 \qquad  \textbf{(D) }\ 10 \qquad  \textbf{(E) }\ 11$

Solution

Note that the given sequence is a geometric sequence with a common ratio $10^{\frac{1}{11}}$. Let the product of the first $n$ terms of the sequence be denoted $P_n$. It is a consequence of the laws of exponents that $P_1=(10^{\frac{1}{11}})^1$, $P_2=(10^{\frac{1}{11}})^{1+2}$, and, in general, $P_n=(10^{\frac{1}{11}})^{T_n}$, where $T_n$ denotes the $n$th triangular number. Setting $P_n$ equal to $100,000$, we see that: (10111)n(n+1)2=105111n(n+1)2=5n(n+1)=110n2+n110=0(n10)(n+11)=0 Because $n$ must be positive, we are left with $n=10$. Given this information, choice (D) may seem appealing. Do not be fooled. The product of the first $n$ terms is exactly $100,000$, but the problem asks for the smallest $n$ such that $P_n$ exceeds 100,000. Thus, the minimum value of $n$ which satsifies the problem is $\boxed{\textbf{(E) }11}$.

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png