2002 AMC 12B Problems/Problem 11

Revision as of 16:25, 18 January 2008 by Azjps (talk | contribs) (s)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The positive integers $A, B, A-B,$ and $A+B$ are all prime numbers. The sum of these four primes is

$\mathrm{(A)}\ \mathrm{even} \qquad\mathrm{(B)}\ \mathrm{divisible\ by\ }3 \qquad\mathrm{(C)}\ \mathrm{divisible\ by\ }5 \qquad\mathrm{(D)}\ \mathrm{divisible\ by\ }7 \qquad\mathrm{(E)}\ \mathrm{prime}$

Solution

Since $A-B$ and $A+B$ must have the same parity, and since there is only one even prime number, it follows that $A-B$ and $A+B$ are both odd. Thus one of $A, B$ is odd and the other even. Since $A+B > A > A-B > 2$, it follows that $A$ (as a prime greater than $2$) is odd. Thus $B = 2$, and $A-2, A, A+2$ are consecutive odd primes. At least one of $A-2, A, A+2$ is divisible by $3$, from which it follows that $A-2 = 3$ and $A = 5$. The sum of these numbers is thus $17$, which is prime $\mathrm{(E)}$.

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions