2003 AIME II Problems/Problem 2

Revision as of 13:45, 25 January 2008 by Anonymous03 (talk | contribs) (Solution)

Problem

Let $N$ be the greatest integer multiple of 8, no two whose digits are the same. What is the remainder when $N$ is divided by 1000.

Solution

We want a number with no digits repeating, so we can only use the digits 0-9 once in contructing our number. To make the greatest number, we want the greatest digit to occupy the leftmost side and the least digit to occupy the rightmost side. Therefore, the last three digits of the greatest number should be a arrangement of the digits $0,1,2$. Since the number has to be divisible by 8, the integer formed by the arrangement of $0,1,2$ has to be divisible by 8 too. The only arrangement that is possible is $120$.

Therefore, the remainder when the number is divided by 1000 is $\boxed{120}$.

See also

2003 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions