1998 AHSME Problems/Problem 22

Revision as of 17:39, 8 February 2008 by Azjps (talk | contribs) (solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

What is the value of the expression \[\frac{1}{\log_2 100!} + \frac{1}{\log_3 100!} + \frac{1}{\log_4 100!} + \cdots + \frac{1}{\log_{100} 100!}?\]

$\mathrm{(A)}\ 0.01 \qquad\mathrm{(B)}\ 0.1  \qquad\mathrm{(C)}\ 1 \qquad\mathrm{(D)}\ 2 \qquad\mathrm{(E)}\ 10$

Solution

By the change-of-base formula, \[\log_{k} 100! = \frac{\log 100!}{\log k}\] Thus (you might recognize this identity directly) \[\frac{1}{\log_k 100!} = \frac{\log k}{\log 100!}\] Thus the sum is \[\left(\frac{1}{\log 100!}\right)(\log 1 + \log 2 + \cdots + \log 100) = \frac{1}{\log 100!} \cdot \log 100! = 1 \Rightarrow \mathrm{(C)}\]

See also

1998 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions