2007 AMC 8 Problems/Problem 2

Revision as of 16:29, 28 October 2024 by Savannahsolver (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

$650$ students were surveyed about their pasta preferences. The choices were lasagna, manicotti, ravioli and spaghetti. The results of the survey are displayed in the bar graph. What is the ratio of the number of students who preferred spaghetti to the number of students who preferred manicotti?

[asy] size(200); defaultpen(linewidth(0.7)); defaultpen(fontsize(8)); draw(origin--(0,250)); int i; for(i=0; i<6; i=i+1) { draw((0,50*i)--(5,50*i)); } filldraw((25,0)--(75,0)--(75,150)--(25,150)--cycle, gray, black); filldraw((75,0)--(125,0)--(125,100)--(75,100)--cycle, gray, black); filldraw((125,0)--(175,0)--(175,150)--(125,150)--cycle, gray, black); filldraw((225,0)--(175,0)--(175,250)--(225,250)--cycle, gray, black); label("$50$", (0,50), W); label("$100$", (0,100), W); label("$150$", (0,150), W); label("$200$", (0,200), W); label("$250$", (0,250), W); label(rotate(90)*"Lasagna", (50,0), S); label(rotate(90)*"Manicotti", (100,0), S); label(rotate(90)*"Ravioli", (150,0), S); label(rotate(90)*"Spaghetti", (200,0), S); label(rotate(90)*"$\mbox{Number of People}$", (-40,140), W); [/asy]

$\mathrm{(A)} \frac{2}{5} \qquad \mathrm{(B)} \frac{1}{2} \qquad \mathrm{(C)} \frac{5}{4} \qquad \mathrm{(D)} \frac{5}{3} \qquad \mathrm{(E)} \frac{5}{2}$

Solution

The answer is $\dfrac{\text{number of students who preferred spaghetti}}{\text{number of students who preferred manicotti}}$

So,

$\frac{250}{100}$

Simplify,

$\frac{5}{2}$

The answer is $\boxed{\textbf{(E)}\ \dfrac{5}{2}}$

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=omFpSGMWhFc

Video Solution by WhyMath

https://youtu.be/rcxZpl44uP0

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png