2024 AMC 12A Problems/Problem 14

Revision as of 21:43, 20 March 2025 by Maa is stupid (talk | contribs) (Removed redirect to 2024 AMC 10A Problems/Problem 21)
The following problem is from both the 2024 AMC 12A #14 and 2024 AMC 10A #18, so both problems redirect to this page.

Problem

Points $X$ and $Y$ lie on sides $\overline{BC}$ and $\overline{CD}$, respectively, of parallelogram $ABCD$ such that $\angle AXC = \angle AYC = 90^{\circ}$. Suppose $BX = 5$ and $DY = 3$, as shown. If $ABCD$ has perimeter $48$, what is its area?

[asy] import olympiad; import graph; size(8cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ pair A = (0, 0), B = (15, 0), C = (12, -6 * sqrt(2)), D = (-3, -6 * sqrt(2)); pair X = (15 - 3 * 5/9, -6 * sqrt(2) * 5 / 9); pair Y = (0, -6 * sqrt(2)); dot(A); dot(B); dot(C); dot(D); dot(X); dot(Y); draw(A--B--C--D--cycle); draw(A--X); draw(A--Y); draw(rightanglemark(A,X,C,15)); draw(rightanglemark(A,Y,C,15)); label("$A$", A, N * 1.5); label("$B$", B, N * 1.5); label("$C$", C, S * 1.5); label("$D$", D, S * 1.5); label("$X$", X, E * 1.5); label("$Y$", Y, S * 1.5); label("$3$", midpoint(D--Y), S * 1.5); label("$5$", midpoint(B--X), E * 1.5); [/asy]

$\textbf{(A)}~40\sqrt{5}\qquad\textbf{(B)}~56\sqrt{3}\qquad\textbf{(C)}~48\sqrt{7}\qquad\textbf{(D)}~90\sqrt{2}\qquad\textbf{(E)}~60\sqrt{5}$

Solution

Note that opposite angles in a parallelogram are equal, so $\angle ADY = \angle ABX$. Also, $\angle AYD = \angle AXB = 90^{\circ}$, so $\triangle AYD \sim \triangle AXB$. The ratio of similarity of these triangles is $\tfrac{AB}{AD} = \tfrac{BX}{DY} = \tfrac{5}{3}$, so let $AB = 5x$ and $AD = 3x$. The perimeter of $ABCD$ is $5x + 3x + 5x + 3x = 16x = 48$, so $x = 3$. Therefore $AD = 3 \cdot 3 = 9$, $AB = 5 \cdot 3 = 15$, and the area of $ABCD$ is $AY \cdot AB = \sqrt{9^{2} - 3^{2}} \cdot 15 = \sqrt{72} \cdot 15 = 6\sqrt{2} \cdot 15 = \boxed{\textbf{(D)}~90\sqrt{2}}$.

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png