2011 AMC 12A Problems/Problem 25

Revision as of 01:37, 10 February 2011 by Kubluck (talk | contribs) (Problem)

Problem

Triangle $ABC$ has $\angle BAC = 60^\{\circ}$ (Error compiling LaTeX. Unknown error_msg), $\angle CBA \leq 90^\{\circ}$ (Error compiling LaTeX. Unknown error_msg), $BC=1$, and $AC \geq AB$. Let $H$, $I$, and $O$ be the orthocenter, incenter, and circumcenter of $\triangle ABC$, repsectively. Assume that the area of pentagon $BCOIH$ is the maximum possible. What is $\angle CBA$?

$\textbf{(A)}\ 60^{\circ} \qquad \textbf{(B)}\ 72^{\circ} \qquad \textbf{(C)}\ 75^{\circ} \qquad \textbf{(D)}\ 80^{\circ} \qquad \textbf{(E)}\ 90^{\circ}$

Solution

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions