2012 AIME I Problems/Problem 1
Problem 1
Find the number of positive integers with three not necessarily distinct digits, , with and such that both and are multiples of .
Solution
A positive integer is divisible by if and only if its last two digits are divisible by For any value of , there are two possible values for and , since we find that if is even, and must be either or , and if is odd, and must be either or . There are thus ways to choose and for each and ways to choose since can be any digit. The final answer is then .
See also
2012 AIME I (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |