2003 AIME II Problems/Problem 1
Revision as of 19:38, 4 July 2013 by Nathan wailes (talk | contribs)
Problem
The product of three positive integers is times their sum, and one of the integers is the sum of the other two. Find the sum of all possible values of .
Solution
Let the three integers be . and . Then . Since and are positive, so is one of so is one of so is one of so the answer is .
See also
2003 AIME II (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.