2014 AMC 10B Problems/Problem 14

Revision as of 12:44, 20 February 2014 by TheCrafter (talk | contribs) (Added solution)

Problem

Danica drove her new car on a trip for a whole number of hours, averaging $55$ miles per hour. At the beginning of the trip, $abc$ miles was displayed on the odometer, where $abc$ is a $3$-digit number with $a\ge1$ and $a+b+c\le7$. At the end of the trip, the odometer showed $cba$ miles. What is $a^2+b^2+c^2$?

$\textbf {(A) } 26 \qquad \textbf {(B) } 27 \qquad \textbf {(C) } 36 \qquad \textbf {(D) } 37 \qquad \textbf {(E) } 41$

Solution

Let $h\in\mathbb{N}$ be the number of hours Danica drove. Note that $abc$ can be expressed as $100\cdot a+10\cdot b+c$. From the given information, we have $100a+10b+c+55h=100c+10b+a$. This can be simplified into $99a+55h=99c$ by subtraction, which can further be simplified into $9a+5h=9c$ by dividing both sides by $11$. Thus we must have $h\equiv0\pmod9$. However, if $h\ge 16$, then $\text{min}\{c\}\ge\frac{9+5(16)}{9}\ge9$, which is impossible since $c$ must be a digit. The only value of $h$ that is divisible by $9$ and less than or equal to $15$ is $h=9$.

From this information, $9a+5(9)=9c\Rightarrow a+5=c$. Combining this with the inequalities $a+b+c\le7$ and $a\ge1$, we have $a+b+a+5\le7\Rightarrow 2a+b\le2$, which implies $1\le a\le1$, so $a=1$, $b=0$, and $c=6$. Thus $a^2+b^2+c^2=1+0+36=\boxed{37 \textbf {(D) }}

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png