2014 AMC 10B Problems/Problem 17

Revision as of 15:40, 20 February 2014 by DivideBy0 (talk | contribs) (Started solution, removde duplicate junk)

Problem 17

What is the greatest power of $2$ that is a factor of $10^{1002} - 4^{501}$?

$\textbf{(A) } 2^{1002} \qquad\textbf{(B) } 2^{1003} \qquad\textbf{(C) } 2^{1004} \qquad\textbf{(D) } 2^{1005} \qquad\textbf{(E) }2^{1006}$

Solution

We begin by factoring the $2^(1002)$ out. This gives us the final answer of $\textbf{(D) } 2^{1005}$.

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png