2014 AMC 10B Problems/Problem 21

Revision as of 12:04, 21 February 2014 by Williamhu888 (talk | contribs) (Solution)

Problem

Trapezoid $ABCD$ has parallel sides $\overline{AB}$ of length $33$ and $\overline {CD}$ of length $21$. The other two sides are of lengths $10$ and $14$. The angles $A$ and $B$ are acute. What is the length of the shorter diagonal of $ABCD$?

$\textbf{(A) }10\sqrt{6}\qquad\textbf{(B) }25\qquad\textbf{(C) }8\sqrt{10}\qquad\textbf{(D) }18\sqrt{2}\qquad\textbf{(E) }26$

Solution

[asy] size(7cm); pair A,B,C,D,CC,DD; A = (-2,7); B = (14,7); C = (10,0); D = (0,0); CC = (10,7); DD = (0,7); draw(A--B--C--D--cycle); //label("33",(A+B)/2,N); label("21",(C+D)/2,S); label("10",(A+D)/2,W); label("14",(B+C)/2,E); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); draw(C--CC); draw(D--DD); [/asy]

In the diagram, $\overline{DE} \perp \overline{AB}, \overline{FC} \perp \overline{AB}$. Denote $\overline{AE} = x$ and $\overline{DE} = h$. In right triangle $AED$, we have from the Pythagorean theorem: $x^2+h^2=100$. Note that since $EF = DC$, we have $BF = 33-DC-x = 12-x$. Using the Pythagorean theorem in right triangle $BFC$, we have $(12-x)^2 + h^2 = 196$.


We isolate the $h^2$ term in both equations, getting $\begin{align*}h^2 &= 100-x^2 \h^2 &= 196-(12-x)^2\end{align}$ (Error compiling LaTeX. Unknown error_msg).

Setting these equal, we have $100-x^2 = 196 - 144 + 24x -x^2 \implies 24x = 48 \implies x = 2$. Now, we can determine that $h^2 = 100-4 \implies h = \sqrt{96}$.

[asy] size(7cm); pair A,B,C,D,CC,DD; A = (-2,7); B = (14,7); C = (10,0); D = (0,0); CC = (10,7); DD = (0,7); draw(A--B--C--D--cycle); //label("33",(A+B)/2,N); label("21",(C+D)/2,S); label("10",(A+D)/2,W); label("14",(B+C)/2,E); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); draw(C--CC); draw(D--DD); label("21",(CC+DD)/2,N); label("$2$",(A+DD)/2,N); label("$10$",(CC+B)/2,N); label("$\sqrt{96}$",(C+CC)/2,W); label("$\sqrt{96}$",(D+DD)/2,E); pair X = (-2,0); //draw(X--C--A--cycle,black+2bp); [/asy]

The two diagonals are $\overline{AC}$ and $\overline{BD}$. Using the Pythagorean theorem again on $\bigtriangleup AFC$ and $\bigtriangleup BED$, we can find these lengths to be $\sqrt{96+529} = 25$ and $\sqrt{96+961} = \sqrt{1057}$. Obviously, $25$ is the shorter length, and thus the answer is $\boxed{\textbf{(B) }25}$.

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png