1992 AHSME Problems/Problem 22

Revision as of 22:20, 27 September 2014 by Timneh (talk | contribs) (Created page with "== Problem == Ten points are selected on the positive <math>x</math>-axis,<math>X^+</math>, and five points are selected on the positive <math>y</math>-axis,<math>Y^+</math>. Th...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Ten points are selected on the positive $x$-axis,$X^+$, and five points are selected on the positive $y$-axis,$Y^+$. The fifty segments connecting the ten points on $X^+$ to the five points on $Y^+$ are drawn. What is the maximum possible number of points of intersection of these fifty segments that could lie in the interior of the first quadrant?

$\text{(A) } 250\quad \text{(B) } 450\quad \text{(C) } 500\quad \text{(D) } 1250\quad \text{(E) } 2500$

Solution

$\fbox{B}$

See also

1992 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png